模型 | Loss | AP | RECALL | 识别正确率 | 误识别率 | 漏识别率 |
FasterRCNN | 0.003 | 0.761 | 0.694 | 71.3% | 19.1% | 28.7% |
YOLOV5 | 0.036 | 0.350 | 0.400 | 65.2% | 17.1% | 34.8% |
UNET | 0.009 |
|
| 74.2% | 19.7% | 25.8% |
MaskRCNN | 0.071 | 0.771 | 0.656 | 72.3% | 19.1% | 27.7% |
SE + MaskRCNN | 0.074 | 0.746 | 0.712 | 73.9% | 19.4% | 26.1% |
Cbam + MaskRCNN | 0.007 | 0.778 | 0.696 | 80.3% | 17.8% | 19.7% |