NO
Functions
D
Search space
fmin
F1
F 1 ( x ) = ∑ i = 1 n x i 2
30
[ − 100 , 100 ] D
0
F2
F 2 ( x ) = ∑ i = 1 n | x i | + ∏ i = 1 n | x i |
[ − 10 , 10 ] D
F3
F 3 ( x ) = ∑ i = 1 n ( ∑ j = 1 i x j ) 2
F4
F 4 ( x ) = max i { | x i | , 1 ≤ i ≤ n }
F5
F 5 ( x ) = ∑ i = 1 n − 1 [ 100 ( x i + 1 − x i ) 2 + ( x i − 1 ) 2 ]
[ − 30 , 30 ] D
F6
F 6 ( x ) = ∑ i = 1 n ( [ x i + 0.5 ] ) 2
F7
F8
F 8 ( x ) = ∑ i = 1 n [ x i 2 − 10 cos ( 2 π x i ) + 10 ]
[ − 5.12 , 5.12 ] D
F9
F 9 ( x ) = − 20 exp ( − 0.2 1 n ∑ i = 1 n x i 2 ) − exp ( 1 n ∑ i = 1 n cos ( 2 π x i ) ) + 20 + e
[ − 32 , 32 ] D
F10
F 10 ( x ) = 1 4000 ∑ i = 1 n x i 2 − ∏ i = 1 n cos ( x i i ) + 1
[ − 600 , 600 ] D
F11
F 11 ( x ) = ∑ i = 1 n u ( x i , 5 , 100 , 4 ) + 0.1 { sin 2 ( 3 π x 1 ) + ∑ i = 1 n − 1 ( x i − 1 ) 2 [ 1 + sin 2 ( 3 π x 1 i + 1 ) ] + ( x n − 1 ) 2 [ 1 + sin 2 ( 3 π x n ) ] }
[ − 50 , 50 ] D
F12
F 12 ( x ) = ( 1 500 + ∑ j = 1 25 1 j + ∑ i = 1 2 ( x i − a i j ) 6 ) − 1
2
[ − 65.536 , 65.536 ] D
0.998
F13
F 13 ( x ) = 4 x 1 2 − 2.1 x 1 4 + 1 3 x 1 6 + x 1 x 2 − 4 x 2 2 + 4 x 2 4
[ − 5 , 5 ] D
−1.0316285
F14
F 14 ( x ) = ( x 2 − 5.1 4 π 2 x 1 2 + 5 π x 1 − 6 ) 2 + 10 ( 1 − 1 8 π ) cos x 1 + 10
[ − 5 , 10 ] × [ 0 , 15 ]
0.398
F15
F 15 ( x ) = [ 1 + ( x 1 + x 2 + 1 ) 2 ( 19 − 14 x 1 + 3 x 1 2 − 14 x 2 + 6 x 1 x 2 + 3 x 2 2 ) ] × [ 30 + ( 2 x 1 − 3 x 2 ) 2 ( 18 − 32 x 1 + 12 x 1 2 + 48 x 2 − 36 x 1 x 2 + 27 x 2 2 ) ]
[ − 2 , 2 ] D
3