特征组 | 模型 | AUC | 准确率 | 灵敏度 | 特异度 |
NO.1 | KNN | 0.635 | 0.717 | 0.855 | 0.416 |
SVM | 0.872 | 0.902 | 0.952 | 0.792 | |
RF | 0.94 | 0.959 | 0.99 | 0.89 | |
LightGBM | 0.956 | 0.966 | 0.982 | 0.929 | |
NO.2 | KNN | 0.669 | 0.725 | 0.82 | 0.518 |
SVM | 0.653 | 0.759 | 0.937 | 0.369 | |
RF | 0.869 | 0.895 | 0.94 | 0.797 | |
LightGBM | 0.857 | 0.885 | 0.932 | 0.781 | |
NO.3 | KNN | 0.613 | 0.679 | 0.792 | 0.434 |
SVM | 0.59 | 0.716 | 0.93 | 0.251 | |
RF | 0.798 | 0.845 | 0.925 | 0.671 | |
LightGBM | 0.817 | 0.849 | 0.902 | 0.732 | |
NO.4 | KNN | 0.608 | 0.682 | 0.807 | 0.409 |
SVM | 0.514 | 0.681 | 0.962 | 0.066 | |
RF | 0.72 | 0.787 | 0.9 | 0.539 | |
LightGBM | 0.742 | 0.8 | 0.9 | 0.583 | |
NO.5 | KNN | 0.526 | 0.634 | 0.817 | 0.235 |
SVM | 0.5 | 0.682 | 0.99 | 0.011 | |
RF | 0.63 | 0.728 | 0.894 | 0.365 | |
LightGBM | 0.653 | 0.73 | 0.862 | 0.444 | |
NO.6 | KNN | 0.709 | 0.751 | 0.822 | 0.596 |
SVM | 0.759 | 0.819 | 0.922 | 0.595 | |
RF | 0.867 | 0.899 | 0.952 | 0.781 | |
LightGBM | 0.898 | 0.921 | 0.96 | 0.836 | |
NO.7 | KNN | 0.717 | 0.765 | 0.845 | 0.589 |
SVM | 0.832 | 0.866 | 0.925 | 0.738 | |
RF | 0.878 | 0.912 | 0.97 | 0.786 | |
LightGBM | 0.905 | 0.926 | 0.962 | 0.847 | |
NO.8 | KNN | 0.665 | 0.723 | 0.822 | 0.508 |
SVM | 0.691 | 0.78 | 0.93 | 0.452 | |
RF | 0.911 | 0.933 | 0.97 | 0.852 | |
LightGBM | 0.961 | 0.971 | 0.988 | 0.934 | |
NO.9 | KNN | 0.709 | 0.751 | 0.822 | 0.596 |
SVM | 0.782 | 0.828 | 0.905 | 0.659 | |
RF | 0.901 | 0.928 | 0.972 | 0.83 | |
LightGBM | 0.955 | 0.969 | 0.992 | 0.918 | |
NO.10 | KNN | 0.717 | 0.765 | 0.845 | 0.589 |
SVM | 0.793 | 0.843 | 0.927 | 0.659 | |
RF | 0.875 | 0.911 | 0.97 | 0.78 | |
LightGBM | 0.959 | 0.972 | 0.995 | 0.923 | |
NO.11 | KNN | 0.726 | 0.768 | 0.84 | 0.612 |
SVM | 0.797 | 0.839 | 0.91 | 0.685 | |
RF | 0.89 | 0.921 | 0.972 | 0.808 | |
LightGBM | 0.961 | 0.973 | 0.992 | 0.929 | |
NO.12 | KNN | 0.635 | 0.72 | 0.865 | 0.405 |
SVM | 0.855 | 0.89 | 0.95 | 0.759 | |
RF | 0.916 | 0.945 | 0.992 | 0.84 | |
LightGBM | 0.964 | 0.973 | 0.988 | 0.94 |