| 算法: |
| # F: 特征提取器 |
| # G:特征域适应器 |
| # N:独立同分布的高斯噪声 |
| # D:分类器 |
| pretrain_init(F) |
| random_init(G, D) |
| for x in data_loader: |
| o = F(x) # 提取正常特征 |
| q = G(o) # 域适应 |
| q_1 = q + random(N_1) #缺陷特征 |
| q_2 = q + random(N_2) #合成正常特征 |
| loss = loss_func(D(q), D(q_1), D(q_2)).mean() |
| loss.backward() # 反向传播 |
| F = F.detach() # F不更新参数 |
| update(G, D) #使用 Adam更新 |
|
|
| # loss function |
| def loss_func(s, s_1, s_2): |
| th+ = -th = 0.5, α=1 |
| return max(0,th-s) + max(0,th_+s_1)+max(0,α-( s- s_1))+| s_1-s_2| |