算法基于ADMM对(3)式的求解
Initialize L 0 = Y 0 = W 0 = 0 , ρ = 1.1 , α 0 = β 0 = 1 e − 3 , ε = 1 e − 8
While not converged do
1: Update E k + 1 by
E k + 1 = arg min ε λ ‖ E ‖ 1 + β 2 ‖ E − ( X k − L k + β − 1 Y k ) ‖ F 2
2: Update L k + 1 by
L k + 1 = arg min L ‖ L ‖ ∗ + γ ( ‖ L ‖ F 2 − ‖ A l ∗ L ‖ F 2 ) + α 2 ‖ L − Z k + α − 1 W k ‖ F 2 + β 2 ‖ L − X k + E k + 1 − β − 1 Y k ‖ F 2 ;
3: Update Z k + 1 by
Z k + 1 = arg min Z 〈 W k , L k + 1 − Z 〉 + α 2 ‖ L k + 1 − Z ‖ F 2 − T r ( A l ∗ Z ∗ B l T ) ;
4: Y k + 1 = Y k + β ( X k + 1 − L k + 1 − E k + 1 ) ;
5: W k + 1 = W k + α ( L k + 1 − Z k + 1 ) ;
6: k = k + 1 ;
7: Check the convergence conditions
‖ L k + 1 − L k ‖ ∞ ≤ ε , ‖ E k + 1 − E k ‖ ∞ ≤ ε ;
‖ L k + 1 + E k + 1 − X ‖ ∞ ≤ ε ;
end while.